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Abstract—Android apps have been traditionally built using
Java since the inception of Android. However, Google announced
Kotlin as an official supported language for the Android platform
in May 2017. Since then, the popularity of Kotlin for Android
projects has steadily increased, to the point that Google an-
nounced in 2019 that “Android development will be Kotlin-first”
with nearly 60% of the top 1,000 Android apps containing Kotlin
code. Yet, the transition from Java to Kotlin seems gradual and
most applications still partially use Java. Outside open-source
apps, little is known about the real proportion of code written in
Kotlin inside apps. This paper supports a better understanding
of the adoption of Kotlin in the Android ecosystem. We propose
an approach to identify the language, Java or Kotlin, in which a
class bytecode of an Android Package Kit (APK) originate from.
We applied our model on more than 200k closed-source APKs
from app stores and found that (i) most of the apps classes are
still written in Java, indicating a mitigated adoption of Kotlin
in less popular apps, (ii) the penetration of Kotlin is steadily
increasing since 2017. We believe our insights are valuable to
assess the adoption of Kotlin at large.

I. INTRODUCTION

Kotlin is described as a modern, expressive and safer
programming language than Java [1]. Some of the differences
with Java, in addition to the more concise syntax, are default
non-nullable reference types, data classes, and type inferences.
Kotlin was designed with Java interoperability in mind so
calling Java code from Kotlin (or Kotlin code from Java) is
straightforward. On Android, Kotlin compiles to the same
bytecode as Java, allowing a full compatibility.

Kotlin has become increasingly popular since it was made
an officially supported Android programming language. Kotlin
was the fastest growing language in 2018 on GitHub and was
still ranked number four in 2019 [2]. Google claims that nearly
60% of the top 1,000 Android apps contain Kotlin code [3]
whereas AppBrain states a market share of 75.95% for the
top-500 US apps and 15.03% overall with over 125,000 apps
using Kotlin [4]. It should be noted that the AppBrain dataset
is also mostly composed of popular apps. Therefore, little
is known about the adoption of Kotlin for less popular apps,
although AppBrain data suggests that it is not as high. Moreover,
AppBrain data does not tell us the proportion of code that is
written in Kotlin. Indeed, detecting if an app features Kotlin
code is trivial since the APK (package file) of an app will then
have a kotlin folder at the root [5]. This folder contains the
bytecode of the Kotlin Standard Library, hence, it is present
as long as a class of the app (or one of its libraries) contains
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only a Kotlin class, but it does not give more information on
the amount of Kotlin code. Knowing the easy interoperability
with Java and that 86% of Kotlin users are still programming
in Java [6], one might wonder if Kotlin’s success is as great
as these figures on popular apps suggest.

Nevertheless these numbers are still impressive for such
a young language, and yet Kotlin is under-represented from
publications on Android in the software engineering community.
To illustrate this, we searched if Kotlin or Java were mentioned
at least once in publications dealing mainly with Android
of some reputed conferences (namely ICSE, MSR, SANER
and MOBILESoft) between 2018 and 2020. The results are
presented in Table I. Kotlin is mentioned only once in six
publications [7]-[12] and one study focuses on its adoption [13],
whereas Java is mentioned in about half of the publications.
Of course, that does not invalidate the publications results
since the conclusions of the publications are not necessarily
language-dependent. But it does show that Kotlin is largely
overlooked even when it could be relevant. For example, when
providing prefetching technique to optimize app latency [14]
or analyzing Android code smells from the source code of
apps [15]. Some classes of the app might be overlooked while
a Kotlin app is optimized in a different way than a Java app,
and many Android code smells are language dependent.

Mention | ICSE | MSR | SANER | MOBILESoft | Total
Android | 15 8 5 25 53
2018 | Java 9 5 5 9 28
Kotlin 0 0 0 2 2
Android 11 9 8 19 47
2019 | Java 4 6 3 10 23
Kotlin 0 0 1 0 1
Android | 11 3 8 18 40
2020 | Java 4 1 7 4 16
Kotlin 1 | | 1 4

TABLE I: Mentions of Kotlin and Java in publications focused
on Android in ICSE, MSR, SANER and MOBILESoft

In this paper, we would therefore like to draw attention on
the growing importance of Kotlin in the Android ecosystem
and hope to pave the way for future studies that will consider
Kotlin. First of all, in order to allow studies that are not limited
to open-source applications, we propose the following research
question:

RQ1: Is it possible to differentiate Android bytecode that
comes from Kotlin or Java classes?



Subsequently, we did a preliminary study by applying our
model on more than 200k apps, answering the following
research question:

RQ2: What is the proportion of Kotlin code over the years

in our dataset?
II. RELATED WORK

Kotlin being a novelty, publications concerning it are
currently few and far between. Three publications are closely
related to our work.

Oliveira et al. [13] performed a triangulation study on seven
Android developers via interviews, to understand the percep-
tions of developers whom adopted Kotlin. They found that
developers consider that Kotlin brings many advantages over
Java, especially for code quality, readability, and productivity.
However, they encounter new problems with the functional
paradigm of Kotlin and the interoperation with Java.

Coppola et al. [16] analyzed a dataset of 1,232 open-source
apps and evaluated their transition to Kotlin. They found that
19% of the apps featured Kotlin and that the transition from
Java to Kotlin was usually fast and unidirectional. They also
observed correlation between the presence of Kotlin code and
the number of GitHub stars obtained.

Mateaus and Martinez [5] created a dataset of 2,167 open
source apps and evaluated the quality of Android apps by
analyzing the presence of code smells. They found 11.26% of
apps featuring Kotlin and that for 63.9% of them the proportion
of Kotlin increases along the app evolution. They also observed
that the introduction of Kotlin in an app produced an increase
of the quality in half of the apps.

These publications provide useful insights about the adoption
of Kotlin and its potential impact on open-source apps. Our
work is complementary, allowing for the analysis of the
bytecode of millions of closed-source apps.

III. DIFFERENTIATE BYTECODE FROM KOTLIN AND JAVA

In an Android APK, the classes’ bytecode is stored inside
classes.dex files, regardless of whether the original language
is Java or Kotlin.

At first glance, the generated bytecode is similar between
the two languages: they use the same keywords and structures.
However, while reviewing this bytecode, a careful person may
notice some recurring differences for a class written in Kotlin.
For example, method calls to Kotlin standard lib functions
can be observed. Also Kotlin bytecode will usually include
metadata annotations, used by the reflection API, which are
not usually present in bytecode produced by a Java compiler.

Unfortunately, these observations only hold if the app is
not obfuscated. As soon as the classes, packages, methods are
renamed and metadata annotations removed (default behavior
of Proguard [17]) there no longer seems to be an easy and
obvious way to differentiate bytecodes produced by the Kotlin
compiler from the ones produced by the Java compiler.

We could, however, expect that the difference between
Kotlin and Java will be reflected in the usage of the different
keywords. That is why we decided to use the numerical statistic
TFIDF (term frequency—inverse document frequency). Also,

not knowing exactly which keywords will be affected, we
decided to use a machine learning approach on top of TFIDF
to determine which features are important and answer RQ1.

A. Dataset

To train our model, we collected all the latest versions of
apps available in the open source app repository F-Droid [18]
in October 2019. The repository contained 2010 open source
apps from which we identified 299 apps featuring Kotlin.

For each app, F-droid provides us an APK and a corre-
sponding source tarball. Our objective is to map the source
classes to the resulting bytecode, and so identify if the bytecode
originates from Java or Kotlin. However, when an app uses
obfuscation we need the mapping files generated by Proguard
to be able to perform this mapping since the name of classes
are not kept. This file is not provided by F-Droid. We therefore
needed to build these apps. 172 of the 299 apps were using
Proguard, from which we were able to build 158 apps using a
semi-automated approach. For all others apps (non-obfuscated
and unable to build), we used the F-droid source tarball.

To obtain the features from the bytecode contained in the
APK, we decompile the bytecode to the smali format using
Apktool [19]. The smali format can be seen as equivalent of
an assembler language for the Android bytecode. There is one
smali files per class, including internal classes. These files are
processed as text files and labeled as Kotlin or Java.

Within the 299 analyzed apps, we obtained a dataset of
51,120 Java classes and 44,198 Kotlin classes, which is then
randomly balanced to 44,198 for both languages.

B. Features

To create the features, we first generate a vectors of words
using TFIDF on the classes dataset. At first, we did not
use a dictionary but then we realized that some app specific
information, such as package name, were provoking overfitting
when used with machine learning models.

Therefore we built a dictionary of 311 keywords!. The
dictionary was generated using the documentation of Dalvik
bytecode [20] using the syntax which is generated when the
bytecode is transformed to smali. Therefore this dictionary
contains words such as “move”, “public”, “goto/16”, “method”,
etc. The dictionary also includes some recurrent hexadecimal
values which are usually associated with specific accessFlags.
The accessFlags are used to determine which are used to
indicate the accessibility and overall properties of classes and
class members. For example, accessFlags with the value 0x79
indicate a public (0x01), static (0x08), and final (0x10) class.
We considered these possible values as important information,
knowing that Kotlin considers each class as final, per default,
and a class needs to be explicitly marked as “open” to allow
inheritance, contrary to Java. Others keywords may reflect
Kotlin specificities, for example, Kotlin does not offer a static
keyword, developers have to create a companion objects to
simulate Java static classes. Also void is replaced by Unit type
in Kotlin.

IList of keywords : https://pastebin.com/UL13YgVm



We also added some keywords related to package and
source code and are not always obfuscated such as “lkotlin”,
“ljava”,“kt”, “jetbrains”, “jvm”. We expected these keywords
to be a strong indicator (especially when specific to Kotlin)
of the original language. Indeed in some case there will be
inheritance or annotations specific to Kotlin, when there is no

obfuscation, the name of the source file can also be present.

C. Results

Our problem may be expressed as a binary classification:
a class is labelled as either Java or Kotlin. We compared
the performance of four different machine learning classifiers:

Random Forest, Linear Classifier, Naives Bayes and XGBoost.

To evaluate the performance of each classifier, we performed
a 10-fold cross validation and calculated the mean precision,
recall and Fl-score, the results are presented in Table II.

Precision | Recall | Fl-score
Random Forest 0.97 0.96 0.96
Linear Classifier | 0.95 0.93 0.94
Naives Bayes 0.94 0.76 0.84
XGBoost 0.96 0.93 0.95

TABLE II: Mean Precision, Recall and F1-score of classifiers
in 10-Fold cross validation

All classifiers perform very well, especially for Random
Forest with an Fl-score of 0.96. We did not observe any
difference of Fl-score when the bytecode is obfuscated. After
investigation, we found that mislabeled classes are often short,
such as enumerations. They do not contains elements which
are helpful to distinguish Java from Kotlin.
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Fig. 1: Top 15 Feature importance of keywords with Random
Forest Classifier

Figure 1 present the 15 most important features used by
Random Forest. It provides a score that indicates how useful
each feature was in the construction of the decision trees within
the model. As mentioned in the previous section, we expected to
observe such differences because of the peculiarities of Kotlin
compared to Java, the Random Forest allows us to quantify their
importance. We observe that the two most important keywords
are related to Java and Kotlin packages used to perform calls.
Kotlin metadata annotations are also well represented with the

metadata keywords and common values for these metadata
(10006, u001a, u0000). We also observe keywords related to
properties of class and methods, such as final or the Ox18 value
of accessFlags presented in the previous subsection. Finally,
there are some instructions such as check, instance or cast that
appear at different frequencies for the two languages, especially
when Java code is called from Kotlin code.

(RQ1) In summary, it is possible to differentiate byte-
code that comes from Java or Kotlin classes with high
precision and recall. Our best results were obtained, using
a Random Forest classifier on a set of features generated
using TFIDF on a set of bytecode keywords.

IV. PRELIMINARY STUDY

Using our Random Forest classifier, we performed a pre-
liminary study on a dataset of more than 201,000 randomly
selected apps. The goal of this study is to further validate our
model and to provide insights about the proportion of Kotlin
code in Android apps and answer RQ?2.

A. Dataset

We collected the APKs from the Androzoo dataset [21].
Androzoo is a growing collection of Android Apps collected
from several apps stores, including the official Google Play
Store, which currently contains more than 14 millions of mostly
closed-source APKs.

We randomly selected APKs which were built between
January 2017 and December 2020. Within a year, an APK
is an unique app (there is no duplicate versions of it), however
different versions of an app can be present in different years.

Our dataset is currently composed of 201,721 APKs?.

The numbers of classes between APKs varies greatly as
illustrated in Figure 2 (1552 APKSs of more than 25,000 classes
were excluded of this figure for visibility), the median number
of classes is 4,637. We observe that apps tend to have more
and more classes as the years go by.
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Fig. 2: Number of classes of APKs in the dataset
All these APKs were analysed using our Random Forest
model. It should be noted that there is no difference between
the bytecode of an app libraries and the app source code.
Therefore, we also consider third-party libraries in this study.

2APKs list and raw results : https://zenodo.org/record/4660602



B. False positive validation

As mentioned in the introduction, the APK of an app
featuring Kotlin will automatically contains a kotlin folder

containing the Kotlin Standard Library bytecode at the root.

Therefore, we know that if our classifier is detecting a Kotlin

class in an APK without this folder, then it is a false positive.

Less than 5% of classes were classified as false positives
in this situation. It is slightly worse than the 3% we expected
considering the precision of our Random Forest model using
the dataset of open-source apps, however it is in the same order
of magnitude. We believe that this slight difference can be
explained by the fact that non-Kotlin apps are overrepresented
in this dataset (95% of APKs).

In the reminder of this paper our results are presented
with these false positives corrected. Therefore, increasing the
precision for non-Kotlin apps.

C. Results

Table III presents the results we obtained, and it clearly
shows that the adoption of Kotlin is growing over the years.

The share of apps featuring Kotlin went from 0.24% in 2017
to 17.00% in 2020. Figures concerning the total proportion of
Kotlin classes, seem less impressive at first glance, growing
from 0.03% to 5.14%. But we should not forget that these
results also include the embedded code of libraries, which
could still be written in Java.

2017 2018 2019 2020
number of apps 60793 66220 46127 28581
apps featuring 145 1600 1222 3738
Kotlin (0.24%) | (2.42%) | (7.58%) | (17.00%)
% of Kotlin 0.03% | 0.49% | 1.76% | 5.14%
classes (All apps)
% of Kotlin classes
(Apps W/ Kotlin) 12.05% | 8.62% 10.11% | 15.10%

TABLE III: Results of the preliminary study, the last line only
concern apps featuring Kotlin

If we focus on apps featuring Kotlin, we can see that a
significant proportion of classes are written in Kotlin (around
15% in 2020). Interestingly, a high proportion of Kotlin classes
can be observed in 2017 for such APKs. However, we can see
in Figure 3 that the trend is increasing along the years. Since
there is very few APKSs featuring Kotlin in 2017, the overall
percentage is heavily influenced by the few projects with a
high proportion of Kotlin classes.

The Appbrain statistics made us suspecting that the adoption
of Kotlin was slower in less popular apps. To observe this
phenomenon, we wanted to find out if our dataset contained
any popular apps. We downloaded the list of the top 100 most
popular apps in each of the 58 categories of the Google Play
Store in 2019. We found 561 of such apps in our dataset
for 2019. The adoption of Kotlin is more important for these
populars apps, culminating at 11.94% of apps featuring Kotlin
in 2019 with a proportion of 12.68% of Kotlin classes. This
limited dataset does not allow us to make any strong claims,
however there seems to be a tendency for popular apps to
adopt Kotlin faster as Appbrain’s data suggested.
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Fig. 3: Proportion of Kotlin classes in Apps featuring Kotlin

(RQ2) In summary, this preliminary study allowed us to
confirm the good precision of our model. In our dataset,
the penetration of Kotlin is increasing steadily but the
proportion of Kotlin remains lower compared to Java. The
adoption of Kotlin appears to be faster for popular apps.

V. THREATS TO VALIDITY

Our model building relies on open-source apps, which are
not representative of all apps. However, we could observe a
good precision for non-Kotlin apps available on stores.

The only obfuscator used in our open-source dataset was
Proguard, therefore we cannot guarantee that our results are
equally valid when an alternative obfuscator is used. However,
by separately testing obfuscated and non-obfuscated apps, we
observed that the important features of our model vary little
between the two. Moreover, previous studies indicate that
Proguard is the most widely used obfuscator [22], [23].

Concerning our preliminary study, we do not claim that
our dataset is representative of Android apps. Therefore the
conclusion are not generalizable. Our goal, was to show a
possible use of our model and to provide an insight of the
adoption of Kotlin beyond the scope of open-source apps.

VI. CONCLUSION AND FUTURE WORK

This paper presented a novel approach to differentiate which
classes of an APK were written in Kotlin or Java with high
precision and recall. We then performed a preliminary study on
more than 200,000 apps and found that in our dataset, most of
the bytecode comes from Java classes. However the adoption
of Kotlin is steadily rising, especially in popular apps where
the proportion of Kotlin code is already significant.

We believe our results can be key to answer a wide range
of questions, including: How developers migrate from Java to
Kotlin? Does Kotlin have an impact on apps quality? Does
Kotlin affect developers’ productivity? Is Kotlin also being
adopted in libraries? How does Kotlin affect apps performance?

Before answering these questions, for future works, we
would like to see how the apps integrate Kotlin over time and
how the quality of apps is affected, similarly to what was done
for open-source apps [5], [16].
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