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Abstract. Modern programming environments offer the Extract Method
refactoring as a way to improve software quality by moving a source code
fragment into a new method. This refactoring comes with an immediate
positive feedback by shortening the refactored method. It can also increase
code re-usage and encourage developers to remove code clones.

The impact of refactorings on the software quality has been the topic of
many research efforts. However, these refactorings are usually studied
in groups. Therefore the metrics evaluated and the observation are not
tailored to a specific refactoring, thus hiding a valuable insight on how
practitioners use a refactoring in particular.

In this paper, we conduct an assessment of the quality impact resulting
from the Extract Method refactoring. Our results statistically confirm
the tendency of the Extract Method to improve complexity and slightly
worsen cohesion, respectively in 46% and 70% of the refactoring. In
addition, we observe that the Extract Method favors re-use and reduces
occurrences of code clones in 56% of the extracted methods. However, our
results also show that some specific cases are contrary to the previously
mentioned trends and that it is therefore necessary to study refactorings
at a low granularity.
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1 Introduction

Refactoring is now an essential practice for improving the quality of a source
code without changing its external behaviors [16, 19, 18]. Refactoring has multiple
expected benefits, such as easing maintenance, reducing code complexity, improv-
ing code readability and removing potential code smells. But recent studies have
shown that refactorings do not always improve the quality of the source code,
and could even worsen it in some scenarios [3, 4, 6].

This paper contributes to this line of research by building on a partial
replication of existing efforts on characterizing the impact of the refactoring on
software quality. Our paper contributes to the field of code quality and refactoring



by focusing on one refactoring, and therefore lowering the granularity of our
research. Most of the work on software quality and refactoring consider various
refactorings, thus, missing opportunities to go in depth of the Extract Method
refactoring.

The Extract Method is one of the most common refactorings [5, 16, 21]; it
allows the developer to take a fragment of code, move it into a new method,
and replace the refactored code with a call to the new method. It it supposed
to improve readability, reduce code duplication and remove long method code
smells.

Modern programming environments make the Extract Method refactoring
a central feature. Consider this informal search on Google video: searching for
“Extract Method refactoring” lists more than 69K different videos that illustrate
how to perform the refactoring using many different programming environment
end IDEs. This informal measurement highlights the relevance of this feature
for practitioners. Understanding the implication of using this refactoring on
software quality is important because it has been shown that a refactoring, when
improperly employed, may degrade the quality of refactored software [3].

This paper presents new insights from a quantitative analysis of a large corpus
of 2,712 Extract Method refactorings gathered from 200 Java projects hosted on
GitHub. Our objective is to explore the usage of the Extract Method refactoring
in Java in order to gain insight on how this refactoring helps developers improve
the quality of their code. In particular, our study provides a detailed analysis
of the impact of the Extract Method refactoring on cohesion, complexity, code
clones, code re-usability and method visibility.

Findings. Our study reveals a number of facts on the Extract Method refactoring:

— 46% of the Extract Method refactorings help to reduce at least 4 complexity
metrics of the refactored method and therefore of the class;

— T70% of the extracted methods reduce the class cohesion, but overall sta-
tistically this effect is very small. In addition, we found that 10% of these
methods are not static and do not depend on any attribute/method of their
class;

— 56% of the Extract Method refactorings favor code re-usability and help
reduce code clones;

— 54% of the extracted methods are private, while 22% of the public extracted
methods are overexposed and may reduce their scope to private.

As in previous works [3,4, 6], our results confirm that the refactoring may
have unexpected effects on code quality metrics in some cases. In addition, our
results also show that Extract Method is often exploited partially and that the
extracted method could be improved in terms of visibility, code clones and static
modifiers. You will find the information of extract methods and commits under
study online 3.

Outline. The paper is structured as follows: Section 2 reviews the studies related
to refactoring and software quality; Section 3 highlights the need for conducting

3 nttp://bit.1ly/RefactoringDataset



a focused study and highlights the opportunity exploited in this paper; Section 4
outlines our empirical setup, the collection process, and metrics we used; Section 5
discusses our findings; Section 6 captures any threats to the validity of our work;
Section 7 concludes and presents our future work.

2 Related work

Numerous studies have exploited mining tools to produce empirical studies on
the relationship between code quality and refactorings [6,4, 7-9, 11, 20].

Elish and Alshayeb [8] propose a classification of 12 refactorings based on
their effect on nine internal and six external quality attributes. Evaluating three
open source projects and three course projects, they determined if the refactoring
tends to decrease or increase the quality attributes. They observed that Extract
Method tends to increase Response For a Class, Number Of Methods, Numbers
of Lines of Code and Lack of Cohesion in Methods, however the impact is not
quantified.

Concerning the relation between Extract Method and code clones, Choi et
al. [7] investigated how code clones are merged during the software evolution
of three Java open-source projects. They observed that Replace Method with
Method Object and Extract Method were the most commonly used refactorings
to remove clones. They suggest improvements for refactoring tools allowing the
detection of clones with different sequences of tokens. They did not study if
clones could be introduced by the refactorings.

Bavota et al. [4] investigated the the relations between metrics or code smells
and refactoring activities on 63 releases of three open source applications. They
observed that there is no clear relationship between the part of code which
developers chose to refactor and quality metrics, moreover about 40% of the
refactorings were performed on classes affected by code smells but only 7% of
them removed the smell.

Kadér et al. [11] evaluated the impact of more than 40 types of refactorings
on 50 metrics in seven open-source projects. They observed that the classes with
the worst maintainability metrics are subject to more refactorings. Overall, they
observed a positive effect of the refactorings on most of their metrics, including
code clones occurrences. However, the results of the refactoring are grouped and
therefore it is not possible to distinguish the influence of each refactoring on the
results.

Based on 25 metrics related to five internal quality attributes: cohesion,
coupling, complexity, inheritance, and size. Chévez et al. [6] observed that more
than 94% of the applied refactorings in 23 open-source projects are performed on
program elements with at least one quality metrics considered as critical. In 65%
of the cases, these critical quality metrics were improved and the remaining 35%
refactorings had no effect. Overall on all metrics, 55% of the observed refactorings
improved internal quality attributes, and 10% were associated with a quality
decline.



Al Dallal et al. [1] performed a systematic literature review on the impact of
object-oriented refactoring on quality attributes. They found numerous studies
on the impact of refactoring on quality, and confirmed that refactoring does
not always improve all quality attributes. However 85.5% of the studies they
considered did not apply any statistical techniques and most of the studies
concerned multiple refactoring scenarios, which could not be distinguished from
each other. These undesirable practices prevented them from precisely analyzing
the individual impact of refactoring on quality.

Pantiuchina et al. [17] empirically investigated the correlation between seven
commonly used metrics and the declared intentions of developers to improve some
quality attributes (i.e. cohesion, coupling, complexity and readability) in 1,282
commits. The study shows that the quality improvements expected by developers
is not always reflected in the associated metrics. In addition to pointing out
inconsistencies between how code quality attributes are perceived by developers
and commonly used metrics, the authors recommend that the combination of
many quality metrics should be preferred over one.

AlOmar et al. [2] also investigated commits where developers showed intentions
to perform refactorings. They discovered that developers use a variety of patterns
to perform refactorings, and that they often directly mention quality attributes
or removing code smells in the associated commit messages.

In another study, AlOmar et al. [3] investigated the correlations between refac-
torings and 27 quality metrics associated to 8 quality attributes such as cohesion,
coupling or complexity in 3,795 open source Java projects. They observed that
in most cases metrics can reflect the developer intentions of improving quality
reported in the commit messages. However, they did not find any metrics which
correlated with the developer’s intentions to improve encapsulation, abstraction
or design size.

In summary, we observe in most publications that refactoring does not always
improve the quality of source code as one might expect. However, it is difficult to
derive a more detailed consensus from these previous works. For some publications,
the quality metrics are observed to be very relevant and the effect of refactorings
on them correspond well to the intentions of the developers [6,3,2]. But for
other publications, the usual metrics seem less relevant for analyzing the impact
of refactorings [4,17]. However, it is important to note that the refactorings
used and the metrics used vary between all these publications. In this paper, we
focus on the Extract Method refactoring. In this way we can ensure that the
chosen metrics, associated results and observations are relevant to this particular
refactoring and that the effects observed are not due to another refactoring.

3 A focused study

The previous section shows that there are numerous high-quality works on the
impact of refactoring on code quality. They provide valuable results, however the
analyzed refactorings are studied together on many different metrics allowing
only aggregated observations. As observed by Al Dallal et al. [1], it is hard to



distinguish between the effects of individual refactoring when multiple refactorings
are applied. Especially since the effects of refactorings on metrics can be conflicting.
For example, the impact of dozens of refactorings on dozens of metrics are reported
by AlOmar et al. [3] and Kédéar et al. [11], but the results of all the refactorings
are grouped together. The impact of a particular refactoring is therefore not
explicit. Overall refactorings do improve cohesion but is it the case for the Extract
Method (or any other other particular refactoring)?

Publications like the one from Elish and Alshayeb [8] do report an evaluated
impact for each refactoring on different metrics, for example that Extract Method
does increase LCOM. However, it is reported as a tendency, which is not quantified
and the possible exceptions to this tendency are not considered.

Chavez et al. [6] provide more detailed results, by reporting if the effects of
each refactoring is positive, neutral or negative on most metrics (or at least one
metric) of a group (cohesion, coupling, complexity, inheritance, size). However,
the results are not detailed for each metric. Our paper contributes to the field by
focusing on only Extract Method, in order to provide an in-depth analysis. It is
complemented by statistical tests to allow precise comparisons with future works.

Our goal is to provide a detailed and quantified analysis on each of our metrics.
In addition to cohesion and complexity, our research incorporates metrics which
are not considered in previous works (e.g. visibility and code reuse) which we
found relevant to report for Extract Method. We also consider a large dataset of
open-source applications.

The results we obtained match some of the previous results, in particular:

— 46% of the extracted methods improves most of our complexity metrics,
similar to the 45% observed by Chavez et al. [6] for their complexity group;

— 70% of the refactored methods increase LCOM, whereas Chavez et al. [6]
observed a worsened cohesion in 59% of cases for their cohesion group.

However, as detailed in the subsequent sections, our effort lead us to new
findings:

— 56% of the Extract Method helps reduce code clones;

10% of the extracted methods could be static;

51% of the extracted methods are called more than once;

— 22% of the public extracted methods are overexposed, and could be privatized.

The following sections details the methodology we adopted, and our results.

4 Empirical study setup
Our methodology has four-steps, which are described in the following subsections.

4.1 Collecting open source projects

To build our dataset, we collect the two hundred most popular Java GitHub
projects. For this, we use the GitHub API to collect the Java projects that have



more stars. The stars in GitHub represents the number of GitHub accounts that
follow this projects, which makes it a reliable proxy for popularity. The number
of stars of these two hundred projects ranges from 2,199 to 2,786. These projects
contain a total of 8,793 software versions and 7,885 files.

4.2 Detecting extracted methods

We use the tool Refactoring Miner to detect commits where developers perform
an Extract Method refactoring [22]. We analyze all the commit history for each
project. In total, refactoring miner reports 80,842 refactorings along the whole
commit history of the two hundred projects under analysis. From these, 3,059
correspond to a unique Extract Method refactoring.

4.3 Computing metrics

As the main difference from previous works [13-15], we focused only on the Extract
Method refactoring, therefore we selected metrics relevant to that refactoring. The
metrics were computed in the refactored class, refactored method and extracted
method; depending on the metric. We categorize these metrics in four groups:
complexity, cohesion, reuse, and visibility.

Complexity. We use seven complexity metrics to measure the complexity of
the refactored method before and after the method extraction. Table 1 briefly
describes each of these metrics.

Table 1. Complexity metrics computed in the refactored method

Name Description

McCabe Cyclomatic Complexity # unique possible paths through the method.

McClure’s Complexity # comparisons plus # control referenced variables.
Nested Block Depth (NBD) The maximum depth of nesting within a method.
Number of Control Variables # control variables reference within the method.
Number of Comparisons # comparisons in a method.

Number of Parameters # parameters a method takes as input.
Input/Output Variables # parameters plus 1 (assuming 1 as a return value).

Cohesion. We use the metric Lack Of Cohesion (LCOM) to measure the cohesion
of a class before and after the extraction. For this, we use the Herdenson-Sellers
method: (< r > —|M]|)/(1 — |M]|). Where M is the set of methods defined by the
refactored class, and F' the defined fields. Let be r(f) the number of methods
that access a field f, where f € F, and < r > is the mean of r(f) over F [10].
LCOM is greater when the class methods depend less on the attributes. However,
LCOM could be controversial because a class may have methods that depend only
on one class field (i.e., an accessor), and accessors increase the lack of cohesion
metric. For this reason, we use three additional metrics:



— Number of used attributes — It is the number of attributes that the extracted
method used.

— Number of internal method calls — It is the number of calls performed by the
extracted method to other methods within its class.

— Static methods — We count how many extracted methods are static. A static
method does not depend on the instance variables of the class and therefore
we consider this fact as a metric to better characterize the cohesion.

Re-use € code clones. We measure the degree of which an extracted method
helps reduce the number of code clones and favor code reuse. In particular, we
measure the following metrics:

— Number of Internal Callers — We statically count the number of times that
an extracted method is called within the class. For this, we only consider
method calls that are performed over the this keyword, and have the same
signature as the extracted method.

— Code Clones — We count the number of code clones that exist in the refactored
class before and after the Extract Method refactoring. For this, we use the
Open Static Analyzer tool*, which detects syntax based code clones, also
called Type-2 clones. Although, there are other tools that are useful to detect
different kind of code clones, these tools need the compiled version of each
program. Compiling GitHub projects is challenging, mainly because not all
projects of provide their dependencies or build mechanisms [12].

Visibility. We count the number of extracted methods that are public, private,
protected and static. We contrast this information with how many times these
methods are called inside and outside the class. Since there may be several methods
with the same signature as the extracted method in the system, to rigorously
compute this metric we need to determine the type of receiver. However, inferring
types is challenging and sometimes even impossible without a compilation process
(which is extremely difficult to run over a high number of projects, as we do). One
of the major reasons of the difficulties to infer types is that to do the inference
accurately one also needs to analyze all the dependencies of the GitHub projects,
and such dependencies are not always available or explicit. Since, our goal is to
detect over-exposed extracted methods, which are methods that are public, but
they are only used inside their class [24]. We compute the following metrics:

— Internal Calls — the number of method calls inside the refactored class that
calls to a method with the same signature that the extracted method and
the receiver the this keyword.

— FEaxternal Calls — the number of method calls outside the refactored class
that have the same signature as the refactored method. Here, we do not
consider the receiver, if there is a potential call to the extracted method
outside the refactored class then we consider that the extracted method is
not overexposed.

* https://github.com/sed-inf-u-szeged/OpenStaticAnalyzer



4.4 Comparing metrics

We compute the previously mentioned metrics in the refactored method and class
before and after the refactoring. For this, we search each class and refactored
method in the software version after the refactoring. This search was done by
looking at the file corresponding to the refactored class, the class name and the
method signature of the refactored method. However, in 347 cases, we could not
identify the class or the refactored method in the new version after the refactoring.
Since, some classes or methods were also renamed in the next version. For this
reason, we focus on measuring the impact of Extract Method refactoring, and
only keep the 2,712 remaining instances in which we were able to compare the
metrics before and after the refactoring.

In particular, we contrast the metric values and then we detect if the metric:
increases, decreases or remains the same after the refactoring. We then manually
review the refactoring where the metrics reports a contradictory result. For
instance, the Extract Method refactoring helps reduce the code complexity of
the extracted method, therefore, if we detect the result is contrary to what one
would expect, we manually contrast the change to understand these situations.

4.5 Statistical analysis

We complete our results with a statistical analysis of the metrics that can be
measured before and after the refactoring. A Shapiro-Wilk normality test confirms
that the distribution of our metrics does not follow a normal distribution. In all
cases the p-value is <0.01, so we can conclude that distributions are not normal.
Therefore, for the remaining of this paper, we rely on non-parametric tests which
do not make assumptions on the distribution of the data.

To observe the statistical significance of the effects of Extract Method on
the metrics, we calculate a p-value using a Wilcoxon signed ranks test. It is a
non-parametric statistical test suitable to compare paired data (before and after
refactoring) and in summary the test aims to determine how different the two
sets of paired data are from one another by focusing on the median. We perform
the test with a 99% confidence level, therefore a p-value <0.01 means that the
sets are significantly different.

We also compute Cliff’s § effect size to quantify the importance of the effect
of the refactoring on the metrics. It is a non-parametric effect sizes measure,
which represents the degree of overlap between two distributions. It ranges from
—1 (if all the selected values in the first set are larger than the ones of the second
set) to +1 (if all the selected values in the first set are smaller than the second
set). It evaluates to zero when the two distributions are identical.

Cohen’s d is more commonly used to calculate effect size and the effect are
usually categorized as small, medium or large, however the accuracy relies of
Cohen’s d relies on normality. Fortunately, Cohen’s d interpretation of results
can be mapped to Cliff’s § : 0 < negligible < 0.147, 0.147 < small < 0.33, 0.33
< medium < 0.474 or 0.474 < large. This labeling is useful for comparisons,
however it should be noted that this labeling was tuned for social science, and



that for some fields of research most effects observed are likely to be small [23].
We also perform this test with a 99% confidence level.

5 Results

All the results of our statistical tests are presented in Table 2. For all the metrics,
except Number of Parameters and Input/Output Variables, the Wilcoxon signed-
rank test shows a statistically significant difference. The effect size confirms these
results for the complexity metrics, however it is more marginal for LCOM. We
describe the results in more detail in the rest of this section.

Table 2. Results of Wilcoxon signed-rank test and Cliff’s 6 on all metrics, a p-value
<0.01 is statistically significant while an effect size>0.147 is a visible effect

Number of | Number of 10 Number of
MeClure| McCabe Comparisons|Control Vars NBD Variables |Parameters LCOM
p-value| <0.01 <0.01 <0.01 <0.01 <0.01| 0.052 0.035 <0.01
Cliff’s §| 0.300 0.262 0.290 0.269 0.274| -0.002 -0.002 -0.054

5.1 Complexity

Figure 1 details how many times the complexity metrics of the refactored methods
increase, decrease, or remain the same. Raw values and percentages are reported
in Table 3. Figure 1 shows that the complexity of most of the methods decrease
or remain the same. The Extract Method refactoring mostly benefit metrics
McCabe, McClure’s complexity, number of comparisons, number of control
variables, and nested block depth as we could observe in Table 2. In particular,
1,391 methods reduce their McCabe complexity (51%). However, 194 (7%) of
them increase their complexity. We can also see that there is a considerable
portion (42%) where the complexity of the refactored method remains the same.
This means that the extracted code portion has no control-flow structures, and
therefore the extracted methods have a low complexity. Number of Parameters
and Input/Output Variable remain the same in most of the cases, therefore
explaining the results of Table 2 where no significant difference is observed.

We carefully performed a manual revision of the refactored methods that
increase the complexity, and conclude that these methods increase their com-
plexity because of additional changes besides the Extract Method refactoring.
For instance, consider the method modification shown in Figure 2 where the
addStepPanel method was extracted from initTitleAndContent method. The
extracted method is called twice after the extraction, one of these method calls
was done inside an if control structure, which was added in the same commit
as the extraction. For 61% of the methods that increase their complexity, these
additional changes were related with the recently extracted method, for instance,
conditionally calling to the extracted method. The remaining 39% of the methods
represent additional changes which are not related to the Extract Method.

For comparison, we also used the “most metrics improved” proposed by
Chavez et al. [6]. We found that 1249 of the 2712 (46%) Extract Method improve
at least 4 complexity metrics, close to the 45% they observed.
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Fig. 1. Method Complexity before and After a Extract Method Refactoring

Table 3. Detailed results of complexity metrics

Number of | Number of I/0 Number of
MeClure MeCabe Comparisons|Control Vars NBD Vari/ables Parameters
Increase | 220 (8%) | 194 (7%) 179 (7%) 173 (6%) 125 (5%) 46 (2%) 36 (1%)
Decrease|1566 (58%)[1391 (51%)| 1377 (51%) | 1294 (48%) |1154 (43%)| 27 (1%) 19 (1%)
Remain | 926 (34%) |1127 (42%)| 1156 (43%) | 1245 (46%) | 1433(53%) |2639 (97%)|2657 (98%)

Observation 1. Our results confirm that most of the Extract Method refac-
torings help reduce the complexity of the refactored method and therefore
of the class. Also, 42% of the extracted methods have a low complexity.

5.2 Cohesion

In our dataset of 2,712 Extract Method refactoring, 286 Extract Methods were
performed in classes which do not have any attribute, and therefore it is not
possible to compute LCOM in theses cases since LCOM depends of the number
of attributes. Hence, the following results are computed for the remaining 2,426
instances. We found that 1,707 (70%) classes increase the lack of cohesion,
essentially because the recently extracted methods do not depend or depend on
few attributes of methods of its host class. Although the difference is statistically
significant, overall the effect on the value of LCOM is quite small as observed
in Table 2. Indeed there is also cases where LCOM decrease, and the median of
both distribution only goes from 0.90 to 0.91.

Figure 3 shows the distribution of the number of attributes used by the
extracted method. It shows that 1,074 (40%) extracted methods do not depend
on any attribute of their class. This affects the metric as we explained earlier.
Figure 4 gives the distribution of the number of internal method calls performed
by the extracted method. Where zero means that the extracted method does
not have any single call to a method of its class. In total, 49% of the extracted
methods do not depend on the other methods of the class. In addition, we have
506 (19%) methods that do not depend on any attributes and/or methods of the



+ private void addStepPanel(Step step) {

+ StepPanel stepPanel = new StepPanel(session, step, previousStep);
+ content.getChildren().add(stepPanel);

+ stepPanels.add(stepPanel);

+ previousStep = Optional.of(stepPanel);

+ 3

private void initTitleAndContent() {
- setText(scenario.getName());

Optional<StepPanel> previousStep = Optional.empty();

+ setText(scenario.getName());

+ if (!scenario.isBackgroundDone()) {

+ for (Step step : scenario.getBackgroundsSteps()) {
+ addStepPanel(step);

+ 3

+ ¥

for (Step step : scenario.getSteps()) {
- StepPanel stepPanel = new StepPanel(session, step, previousStep);
- content.getChildren().add(stepPanel);
- stepPanels.add(stepPanel);
- previousStep = Optional.of(stepPanel);

+ addStepPanel(step);

Fig. 2. Extract Method Refactoring in the Karate GitHub project

class. These methods normally are declared static, however, we found that 10%
of these methods does not depend on the host class and may be easily converted
to static or move to another class where they may be more cohesive.

Observation 2. 70% of the extracted method slightly reduce the class
cohesion, confirming the trend observed in previous studies. In addition, we
found that 10% of these methods are not static and do not depend on any
attribute/method of their class.

5.3 Re-use & code clones

Code clones. We analyze the number of code clones in the refactored class
before and after each refactoring. Since, the code clone metric vary depending
on a threshold, the minimum number of code lines in the clone, we compute the
number of code clones using five thresholds (1 to 5). The idea is to assess whether
this threshold may have an impact on the evolution of code clone. Figure 6 shows
the proportion of increased, decreased and equal number of code clones remains.

As one would expect, the number of code clone decreases as the value of the
threshold increases. However, the proportion of increase, decrease and remain is
similar for all thresholds. For increase, the proportion varies between 23% and
24%, while it is between 55% and 58 % for decrease and between 19% and 21%



1200 1400
1000
800

1200
1000
800
600 600
400 400
200 ‘ I 200
0 == 0

0o 1 2 4 0

5 6 8 10 16 20 60

II-_
1 2 3 4 8 15 20 31 60 90 353

Fig. 3. Extracted Method - Number of Fig. 4. Extracted Method - Number of
Used Attributes Internal Method Calls

remain the same. For example, using the a threshold of four, we found that from
the 2,712 refactorings 818 (30%) of the classes have code clones. In these classes,
473 (58 %) of the Extract Method refactorings help reduce the code clones in
the refactored class. However, 19% of the code clones remains in the class and
there are 23% of the refactored classes that increase the number of code clones
in the same commit.

The results of Wilcoxon signed-rank test and Cliff’s § for all the thresholds
are presented in Table 4. There is statistical significance in all the cases, however
the effect size is arguably small, although close to 0.137 for the firsts thresholds.
It decreases with every thresholds since less code clones are found.

Table 4. Wilcoxon signed-rank test and Cliff’s ¢ for the thresholds of code clone

Threshold
p-value
Cliff’s 6

1
<0.01
0.132

2
<0.01
0.131

3
<0.01
0.125

4
<0.01
0.114

5
<0.01
0.087

Figure 5 illustrate how Extract Method can affect code clones. Consider
the method modification done where the method action was extracted from
the method actionPrimary. The recently extracted method was called in two
different places, in the source method at line 63 and 69. The method call in line
63 was done as a result of the Extract Method refactoring, where a set of line
were replaced by this new method call. However, an additional method call was
inserted in line 69, this additional change is not related to the Extract Method
refactoring. Furthermore, a method call to setPrimary was added before both
method calls and duplicate code.

Observation 3. Around 56% of the extracted methods reduce the code
clones in the refactored class, and around 20% of the classes remain with
code clones after the Extract Method.

Re-use. When a piece of code is extracted to a new method, this method may
be re-used in the system. We count how many times the extracted method is
called inside the refactored class. Figure 7 gives the distribution of the numbers of
times that an extracted method is called inside their class. 51% of the extracted



@Override

public void actionPrimary(Vector3f point, int textureIndex, AbstractSceneExplorerNode ro
- if (radius == @ || weight == @)
= return;
= RaiseTerrainToolAction action = new RaiseTerrainToolAction(point, radius, weight, ge
- action.doActionPerformed(rootNode, dataObject);

+ setPrimary(true);

+ action(point, textureIndex, rootNode, dataObject);
}
@Override

public void actionSecondary(Vector3f point, int textureIndex, AbstractSceneExplorerNode
- // no secondary option

68 + setPrimary(false);
) action(point, textureIndex, rootNode, dataObject);
}
private void action(Vector3f point, int textureIndex, AbstractSceneExplorerNode rootNode
if (radius == @ || weight == @)
return;

if (!modifying)
modifying = true;

+ o+ o+ o+ o+ o+ o+

Fig. 5. Code Clones Before and After a Extract Method Refactoring

methods are called more than once, meaning that these extracted methods are
reused at least once. However, 49% of the extracted methods are called only once
and therefore were not reused.
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Fig. 7. Number of Internal Calls to the
Fig. 6. Number of code clones Recently Extracted Method

Observation 5. 51% of the extracted methods are called more than once,
thus favoring code reuse.

5.4 Visibility

One could expect a large majority of extracted methods to be private. However,
We found that only 54% of the extracted methods are private, and 33% are
public, the remaining are protected and package. We automatically review how



many of the public extracted methods are reused from other classes besides the
host class. We found that 22% of the public methods are only used inside their
class, therefore we consider these methods as overexposed [24], since it is not
necessary for them to be public.

Observation 6. 54% of the extracted methods are private, and 22% of the
public extracted methods are overexposed and may reduce their visibility
scope.

6 Threats to validity

Construct validity. We use refactoring miner to detect extract method refac-
toring instances along software versions. Although refactoring miner has a high
precision and recall, it may still report false negatives and positives. In particular,
for the Extract Method refactorings, Tsantalis et al. reported a precision of
98.63% [22]. We were able to manually analyze and confirm all the extracted
methods we considered in our study. However, there is still a chance that we
miss a number of extract method refactorings since studies on the Refactoring
Miner report a recall of 84.72%. In addition, we measure the complexity metrics
using Jasome, an open source project ®. Therefore, the precision of our analysis
is related to the precision of this tool. To verify the precision of this tool, we
manually review a random sample of 200 extracted methods and all indicate that
this tool computes the metrics accurately.

Internal validity. A software version may contain different software changes
in addition to refactorings. As a consequence, the metrics considered in this
study may vary due to the additional code changes in the same class besides the
refactoring. Section 5 gives a number of examples of this situation. Therefore,
our study as well as the previous work are subject to this threat to validity.

External validity. Our study only includes open-source projects for obvious
accessibility reasons, hence we cannot generalize the results to industrial projects.
In addition, we focus on the Java programming languages, therefore our findings
are valid for Java.

Conclusion validity. We believe that our sample considers a great variety of
projects. However, our findings might be different for other dataset. We were
careful not to violate the assumptions of the performed statistical tests. After
observing that the distributions of our metrics were not normal, we only used non-
parametric tests that do not require making assumptions about the distribution of
the metrics. Concerning effect size, we relied as much as possible on the standard
labeling of small, medium and large. However, our interpretations are not strictly
limited to this labeling, as long as the Wilcoxon signed-rank test was significant.
As mentioned earlier, this labeling was tuned for social science [23] and it is quite
possible that it may not be fully adapted to our needs.

® https://github.com/rodhilton/jasome



7 Conclusion

In this paper, we investigate the refactoring effects of Extract Method on quality.
At the difference of previous studies that consider a great variety of refactoring,
we focus on the Extract Method refactoring in order to provide a more tailored
analysis and detailed results. We conducted an in-depth analysis by considering
additional metrics which are related to this particular refactoring, such as, code
clones, code re-usability and method visibility. Furthermore, we consider a large
set of projects and analyze 2,713 Extract Method refactorings.

Our results are comparable to previous works in term of complexity and
cohesion. We found that most of the Extract Method refactorings help reduce
the complexity, however, they also tend to slightly reduce the class cohesion.
This fact is mainly because the extracted method depends on a few (or none)
attributes and methods of its class. In terms of reuse and code clones, we found
that 56% of Extract Method refactoring helps reduce the number of code clones,
and 51% of the extracted methods are called more than once, favoring code reuse.
Although, previous studies analyze the impact of refactorings on code smells,
they do not consider code clones. Finally, we found that 22% of the extracted
methods are overexposed, therefore, they may easily reduce its scope to private.
Thus this study completes and nuances the results of previous research in this
topic. As future work, we plan to replicate our experiment in other programming
languages and focus on other refactorings, allowing us to adapt the metrics and
interpret the results on a case-by-case basis.
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