State of the Practice in Service Identification for
SOA Migration in Industry

Manel Abdellatif''?, Geoffrey Hecht!, Hafedh Mili', Ghizlane Elboussaidi®,
Naouel Moha!, Anas Shatnawi!, Jean Privat!, and Yann-Gaél Guéhéneuc?

! Département d’informatique, Université du Québec & Montréal, Canada
2 DGIGL, Polytechnique Montréal, QC, Canada
3 Ecole de Technologie Supérieure, Montréal, QC, Canada

Abstract. The migration of legacy software systems to Service Oriented
Architectures (SOA) has become a mainstream trend for modernizing
enterprise software systems. A key step in SOA migration is the identi-
fication of services in the target application, but it is a challenging one
to the extent that the potential services (1) embody reusable function-
alities, (2) can be developed in a cost-effective manner, and (3) should
be easy to maintain. In this paper, we report on state of the practice
of SOA migration in industry. We surveyed 45 practitioners of legacy-
to-SOA migration to understand how migration, in general, and service
identification (SI), in particular are done. Key findings include: (1) re-
ducing maintenance costs is a key driver in SOA migration, (2) domain
knowledge and source code of legacy applications are most often used
respectively in a hybrid top-down and bottom-up approach for SI, (3)
industrial SI methods focus on domain services—as opposed to technical
services, (4) there is very little automation of SI in industry, and (5)
RESTful services and microservices are the most frequent target archi-
tectures. We conclude with a set of recommendations and best practices.

1 Introduction

Software maintenance consumes the bulk of IT budgets, as legacy applications
become harder to extend, fix, or even sustain in operation—with the obsoles-
cence of the hardware and software on which they were built [14]. Rewriting
from scratch is seldom an option, for two major reasons: 1) the substantial effort
required to rewrite (tens of) millions of lines of code, and 2) the amount of valu-
able domain or procedural knowledge embodied, but otherwise undocumented,
in such applications. Hence, application modernization remains essential to ease
the maintenance of legacy systems and make them more flexible without losing
their business values.

The migration of legacy systems to Service-Oriented Architecture (SOA) is
one avenue for their modernization. SOA makes it possible to develop complex
and inter-organizational applications by integrating/orchestrating high-quality
and reusable services. The migration of legacy systems to SOA requires identi-
fying services, which is considered the most challenging task of the overall mi-
gration process [13]. Service Identification (SI) consists in identifying, in legacy
systems or/and from the system domain decomposition, reusable services that

may embed valuable business logics. The reusable services must meet a range of
expectations concerning their capability, quality of service, and efficiency of use.

Several SI approaches have been proposed in the literature of academic re-
search [4,16,10]. However, these approaches are based on few evidence and out
of touch with industry practices due to the little knowledge about the state-of-
the-practice of SI as part of real” migration projects. Therefore, in this paper,
we want to minimize the gap with industry by understanding industrial prac-
tices and identifying best practices of legacy applications migration to SOA in
general and SI in particular. Thus, we wanted to answer the following research
questions:

— RQ1. What kind of systems are being migrated to SOA?

— RQ2. Why are such systems being migrated?

— RQ3. What approaches are being used for application migration, in general,
and SI in particular?

To this end, we surveyed 45 SOA migration practitioners using an online
survey, and interviewed eight of them to answer these questions. We identify
key findings including: (1) reducing maintenance costs is a key driver in SOA
migration, (2) domain knowledge and source code of legacy applications are
most often used respectively in a hybrid top-down and bottom-up approach
for SI, (3) SI focuses on domain services, (4) there is little automation—the
process of migration remains essentially manual, and (5) RESTful services and
microservices are the most frequent target architectures.

This paper is structured as follows. Section 2 presents the related work. Sec-
tion 3 describes the study design. The results of the online survey are presented
in Section 4. Section 5 reports the results of the interview sessions, which are
discussed in Section 6. We conclude in Section 7 with recommendations and best
practices for SI.

2 Related Work

Seldom are research surveys related to the migration of legacy systems to SOA.
Razavian and Lago [15] conducted an industrial survey about legacy-to-SOA
migration approaches by targeting seven SOA solution providers. They argued
that all industrial migration approaches share the same set of activities as they
start by transforming the business models of legacy systems to continue with
service design and implementation. Taibi et al. [19] have also performed a survey
on migration to microservices architectures, filled by 21 practitioners. The survey
mainly focus on the migration reasons and report that maintenance cost of legacy
systems is the main reasons of legacy-to-microsevices migration. Although these
study approaches and results are similar to ours, their focus differ deeply as we
cover more in details state of the practice on SI in terms of (1) the methods used,
(2) the artifacts used by these methods, (3) the processes of these methods, and
(4) the outputs of these processes. We also cover more participants and report
best practices for SI.

More in general, a number of primary studies have been proposed in the liter-
ature about SI. Many of the proposed techniques rely on Business Process Models

(BPMs), to identify services within the context of legacy migration [18,17,11].
These techniques decompose processes into tasks and then map these tasks to
legacy source code elements to identify candidate services. Other SI techniques
use heuristics based on the technical properties of services, as reflected in vari-
ous metrics [1,12,10]. Such techniques often use these metrics to drive clustering
and machine learning algorithms that identify software artefact clusters as can-
didate services. However, they do not always produce good candidate services.
Other Al-based techniques use ontologies and Formal Concept Analysis to iden-
tify services in legacy systems [8,2,20]. They too, are complex and not ready for
industrial applications. Other techniques put service interfaces around ezisting
functional components and subsystems [4,16,17,6] but do not infer such clusters
from finer-grained software artefacts. These so-called wrapping-based techniques
are suitable for integration problems, but do not solve the maintenance issues.

3 Study Design

The survey presented in this paper was conducted between October 2017 and
March 2018 and aimed to investigate the state of the practice in SOA migration,
in general, and service identification in particular. Our study consisted of four
main phases:

A- Preparation of the online survey. We created a web-based survey
(see https://goo.gl/forms/EE31KeATR7pUeTYI2) using Google forms. The sur-
vey was prepared based on our literature survey of the state-of-the art methods
for SI and informal discussions with some subject matter experts. This helped
identify the dimensions/aspects of the questionnaire, the individual questions,
and the possible answers for each question. Before publishing the survey, we per-
formed a pilot with six potential subjects, three from academia and three from
industry, to validate the relevance of the questions, their wording, the coverage
of the answers, etc. The six ’testers’ went through the questions and suggested
minor changes. The final survey contained six sections: 1) participants’ profes-
sional and demographic data, 2) type of migrated system, and reasons for the
migration, 3) general information about SI methods (perception of importance,
strategy, inputs, level of automation), 4) detailed technical information about SI
(technique/algorithm used, quality metrics considered), 5) Information on the
types of services sought and targeted technologies, and 6) Information about the
tools used, and the suggested best practices.

B- Selection of participants. We targeted developers with an industrial
experience in SOA migration. Identifying and soliciting such developers was chal-
lenging. We relied on (1) information about companies that offer modernization
services, (2) online presentations and webinars made by professionals that had
the professional’s contact information, and 3) search queries on LinkedIn pro-
files, such as “legacy migration OR legacy modernization OR SOA architect OR
SOA migration OR Cloud migration OR service migration OR service mining”.
Once we identified potential participants, we sent them invitations via e-mail,
LinkedIn, Facebook, and Twitter. We chose not to solicit more than three profes-
sionals from any given company to: 1) have an as wide representation as possible,
and 2) to not overburden a single organization with our request.

C- Online survey. We invited 289 professionals to participate, and kindly
asked them to forward our invitations to other people in their network who have
experience in SOA migration and SI. The survey was completed by 47 people,
two of which did not participate in SOA migration projects and whose responses
were discarded, leaving us with 45 complete responses.

D- Validation. We assessed the reliability of the answers in the online
survey by looking for spurious/facetious answers, contradictions between an-
swers, etc. To be able to validate improbable answers, one question of the survey
asked participants if they agreed to be contacted for a follow-up 30-minute in-
terview, and 24 out of 45 agreed; however only eight could be interviewed in
the end and the results of those interviews are shown in Section 5. A two-pass
method [5] was used to analyze our transcripts of the individual interviews (see
https://goo.gl/ZYv2Ut for sample transcripts). The first pass of the analysis
consists of thematic coding to identify broad issues related to legacy-to-SOA
migration in general and SI in particular. The second pass of analysis was per-
formed using azial coding to identify relationships among the identified issues.
Major factors were identified using meta-codes. The meta-codes were then used
to identify similar patterns across the data from the multiple interviewees. Over-
all, the answers were plausible, and the eight detailed interviews confirmed the
questionnaire answers, although provided us with more in-depth information.

4 Analysis of the Results of the Online Survey

In this section, we describe the results of our survey. We allowed multiple answers
to most questions of the survey, therefore the sum of the computed percentage
may exceed 100% in some cases. The given percentages are computed based on
the total number of participants who answered a given question.

A- Participants. We reached a total of 45 participants who were involved
in legacy-to-SOA migration projects in different capacities: 50% were software
architects, 23.7% were directors of technology, and 21% were software engineers.
The remaining 5.3% of participants mentioned other positions such as migration
specialists, project managers and CEOs. They work in different industries: 64%
were in technology and telecommunication, 20% from banking and insurance,
12.8% from health, and 3.2% from education. In terms of experience, 78% had
more than 10 years of experience, and this was somewhat reflected in their age
distribution: 23% were less than 35 years old, 39% were between 36 and 45,
20.5% were between 46 and 55, and 17.5% were over than 55 years old.

B- Types of legacy systems. The results show that the legacy systems in-
cluded mainframe applications, transactional applications, ERP systems, mono-
lithic client-server applications, software-analysis tools, and visualization tools;
13% of these were less than 5 year old, 18% were between 5-10 year old, and 69%
were more than 10 years old. In terms of size, 62% of the systems were deemed
large, 36% were medium size, and 2% were deemed small. Cobol (52.6%) and
Java (57%) were the two most prominent languages for legacy systems. Figure
1 shows the many other languages used in the migrated applications.

Finding 1: Practitioners migrate different types of old legacy systems im-
plemented mainly in Cobol and Java.

COBO(\-:) B Maintenance 82%
C++ FED]
Ci—— Interoperability 64%
Java 55| Performance 38%
Javascr\gl 20%] N
RPG {81 Reliability 42%
Clcs{_ T e
Forlr\z:]/n1] Availability 38%)
 —)
Assembler 13%] Flexibility 64%)|
ORACLEfDrn:(SP % Testability 38%)
Pageal & Other 245%)
0 5 10 15 20 0 10 20 30
Number of responses Number of responses
Fig. 1. Used languages in legacy systems Fig. 2. Reasons for migration

C- Motivations for Legacy-to-SOA Migration. We asked about the mo-
tivations behind the migration of legacy systems to SOA. We provided a list of
reasons for the migration as shown in Figure 2. The most prevalent motivation
was to reduce maintenance costs (82%). Practitioners reported during the in-
terviews that the cost involved in maintaining legacy systems can be high due
to (1) the poor/outdated documentation of these systems; (2) the obsolete/old
programming languages used to implement these systems; (3) the decay and dif-
ficulty to understand the architectures, designs, and implementations of these
legacy systems; and, (4) the lack of developers with the skills necessary to main-
tain these systems. The second most significant motivation to migrate legacy
systems was to improve their flexibility (64%). We have been told during the
interviews that practitioners have difficulties with legacy systems because they
do not allow companies to have the flexibility required to carry out day-to-day
tasks for evolving systems to meet new business requirements. The improvement
of the interoperability of the legacy systems with the migration to SOA was the
third most significant motivation (64%). During the interviews, practitioners
told us that SOA eases the interoperability of heterogeneous systems by exploit-
ing the pervasive infrastructure of the network. Thus, it offers the possibility
to continue using and reusing the business capabilities provided by legacy sys-
tems in new, modern systems [9]. Improving system availability and testability
as well as improving performance were other motivations of industrial legacy-to-
SOA migration projects (38% each). Participants also mentioned other business
and technical reasons for migrating legacy systems to SOA, such as improving
business agility, having new user interfaces, and embracing new technologies.
Finding 2: Reducing maintenance costs, improving the flexibility and inter-
operability of legacy systems are the main motivations to migrate legacy systems.

D- Importance of Identifying Reusable Services from Legacy Systems.
We asked about the importance of identifying reusable services in the source code
of legacy systems during the migration process: 87% of the participants qualified
it as important while only 13% thought that it is not. We explain this agreement
by the benefits of software reuse, which (1) increases software productivity by
shortening software-development time, (2) reduces software development costs
by avoiding the reimplementation of existing services, (3) reduces maintenance
costs because the reused services were functional and have been well-tested, and

(4) reduces the risk of introducing new failures into the process of enhancing
or creating new business services. We explain the 13% of disagreement as some
participants undertook top-down migrations rather than bottom-up or mixed
migrations and the former does not require identifying services in source code.

Finding 3: Identifying services in legacy applications is an itmportant step
in legacy-to-SOA migration.

Source Code 76%] Class clustering 22%

Database 58%]
Business Process 7196 Functionality clustering 60%
Execution traces 16%| Formal concept analysis 20%
User Interfaces 0% Heuristics-based 13%
Use Case 53%]
Activity diagrams 9% Wrapping 47%
Data Flow diagrams 27%) Genetic algorithms 7%)
State Machines diagrams {79l Machine learning -196]
Ontology { 9%
Human Expertise 1 T 60%] Feature location 13%
Documentation 44%) None of the above 9%|

0 10 20 30 0 5 10 15 20 25

Number of responses Number of responses

Fig. 3. Used inputs for SI in industry Fig. 4. Used Techniques for SI in industry
E- Inputs of SI. Through a literature review, we identified several types of
inputs used for SI. We listed these inputs in our survey and asked participants
on which inputs they relied to identify services. Figure 3 shows that the most
used inputs were source code, business process models, databases, and human
knowledge. 76% of the participants relied on the recovery of the business logic of
legacy systems through the analyses of the source code to identify services with
high business value. 71% relied on the mapping of business processes with the
legacy source code to extract reusable services through human expertise. These
artifacts may help software engineers to have a better understanding of the legacy
systems. Finally, participants rarely relied on ontologies, activity diagrams, state
machine diagrams, and execution traces to identify services. This observation
may be due to their unavailability or complexity to establish especially since our
practitioners deal with large systems.

Finding 4: Many software artifacts can be used for SI. Practitioners mostly
used source code, business process models, databases, and human expertise. There
1s a very low interest in relying on ontologies, activity diagrams, state machine
diagrams, and execution traces to identify services.

F- Directions of SI. We asked participants about their choices of direction for
identifying services. We proposed three directions: (1) Top-down: starting from
domain-specific conceptual models, like business concepts and process models,
to identify services, which are then specified and implemented through a forward
engineering process; (2) Bottom-up: starting by analyzing the existing legacy sys-
tem artifacts and identifying services from reusable legacy code; and (3) Mixed:
starting both from domain-specific conceptual models and the analyses of the
legacy system to identify services. We found that 53% of the participants use a
mixed direction to identify services. Participants used almost equally top-down
and bottom-up directions with 23% and 24% each. We explain these observations
as follows: (1) practitioners relied on source code and business process models
as reported in Finding 4, (2) practitioners also relied on extracting the busi-
ness logic of legacy systems because documentation was not always available,
(3) practitioners prioritized reuse and avoided development from scratch to re-
duce time and costs, and (4) practitioners faced limitations due to the lack of

legacy experts/knowledge, unavailability of up-to-date documentation, program
comprehension, and challenges of reverse-engineering legacy systems.

Finding 5: Practitioners highly rely on a mized direction to identify services
during legacy-to-SOA migration process.

G- Techniques for SI. We asked about the techniques that they used to iden-
tify services. As depicted in Figure 4, we found that 60% of the participants relied
on clustering functionalities of the legacy systems and exposing these clusters
as services. 47% of them relied on some black-box techniques, like wrapping,
because they either consider the migration as an integration problem or did not
want to modify the core functionalities of the legacy systems because it provided
useful services. We observed a low interest in using machine-learning techniques,
formal-concept analysis, or meta-heuristic algorithms to identify reusable ser-
vices. Using these techniques may be challenging for practitioners because they
are dealing with large systems to migrate and so the knowledge required to es-
tablish these techniques could be time consuming and may not lead to optimal
results. Also these techniques are researched by academics and not mainly by
professionals (see section 2). Finally, 9% of the participants mentioned that they
did not use any techniques and performed SI manually.

Finding 6: Functionality clustering and wrapping are the most used tech-
niques of SI in industry.

H- Analyses types for SI. We asked about the types of analyses that they per-
formed for SI (static, dynamic, textual, and—or historical analyses). We observed
that 87% of the participants relied on static analyses of the source code of the
legacy systems to identify services. 43% of them reported that they relied on run-
time analyses. Participants also relied on textual analyses for the identification
processes. Textual analyses include elements such as features identification tech-
niques, natural language processing, legacy documentation analysis, etc. Only
18% of the participants reported that they relied on historical analyses (analyses
of different versions of the legacy system) to extract candidate services, which
may be due to (1) the unavailability of several versions of the legacy system and
(2) the difficulty to study the evolution of a legacy system to gather valuable
information to identify reusable services.

Finding 7: Practitioners mostly relied on static analyses of the source code
of their legacy systems for SI.

Loose Coupling 44%|
High Cohesion 24% Business e
Granularity 47%)
Composability 29% Entreprise 49%‘
Self-descriptiveness 20%
Service Reuse 62%] Entity 56%‘
Number Of services 29% Application 73%
Cost 40%
Adaptation Effort 42% Utility 38%
None of the above 11%
0 10 20 Infrastructure 38%

Number of responses 0 10 20 30
Number of responses

Fig. 5. Desired services quality criteria for Fig. 6. Types of the migrated services

SI in industry
I- Services Quality Criteria. We asked the participants about the quality
metrics/criteria that they sought during SI. We identified the quality criteria,

listed in Figure 5. Service reusability was the most sought quality criteria by the
participants (62%), followed by service granularity (47%), and loose coupling
(44%). Reusability was defined by participants as both a measure of the amount
of source code reused in the services and the amount of services reused in the
systems. Costs and the adaptation effort were also considered by the participants
during the identification process (40% and 42% respectively). However, they
did not consider self-descriptiveness, high cohesion, composability, and the total
numbers of services when identifying services.

Finding 8: Only few service quality criteria are desired by practitioners in
the SI process: reusability, granularity, and loose coupling.

J- Types of the Identified Services. We provided practitioners with a tax-
onomy classifying service types into domain-specific (business) services versus
domain-neutral (technical) services. The provided domain-specific services are:
(1) business services, enterprise services, application services and entity services.
The technical services are utility services and infrastructure services. We report
the results in Figure 6. As domain-specific services represent the business core
functionalities of SOA, they were the most targeted services (i.e., business and
application services) during the SI processes compared to technical services. Util-
ity and infrastructure services were the less targeted services because they are
SOA-specific services and utility services are relatively easy to implement.

Finding 9: SI is a business-driven process that prioritized the identification
of domain-specific services rather than technical services.

K- Service Technologies. We asked the participants about the services tech-
nologies that they targeted during migration. We found that 75% of them use
REST services, 60% use SOAP and only 4.5% use Service Component Architec-
ture (SCA). Surprisingly, half of the participants reported that they focused on
identifying microservices in legacy systems. While there is no precise definition of
this architectural style, microservices are gaining interest among organizations,
especially with the growth of the Cloud and DevOps paradigms [7].

Finding 10: Restful services are the most targeted service techmnology in
legacy-to-SOA migration.

L- Automation of SI. We asked the participants about the degree of automa-
tion of their SI techniques as well as the tools they used to this end (for the
lack of space, we report the list of tools in https://goo.gl/ZYv2Ut). We found
that many different tools are being used as well as manual analyses and in-house
tools put together for the migration of particular legacy systems. However, not
one set of tools supports adequately the migration of systems to SOA. We also
found that the majority of the techniques used by the participants to identify
services are either semi-automatic (51%) or manual (42.3%). Ounly three par-
ticipants (6.7%) mentioned the use of tools to identify automatically reusable
services. We highly believe based the reported tools that these fully-automatic
approaches deal with re-engineering tasks as well as wrapping techniques that
automatically expose legacy systems functionalities as services.

Finding 11: There is a lack of automation of SI techniques in industry but
input from human experts is essential to annotate/qualify intermediate or final

results of SI.
M- Threats to the Validity.

Construct validity threats refers to the extent to which operationalizations
of a construct (in our case the survey and interview questions and terminology)
do actually measure what the theory claims. To minimize this threat, we used
both open and closed questions in the survey and tried to minimize the ambi-
guities through our pilot study as we mentioned in section 3.

Internal validity acquiescence bias is a kind of response bias where re-
spondents have a tendency to agree with all the questions in the survey or to
indicate a positive connotation. It is sometimes referred to the tendency of a
respondent to agree with a statement when in doubt. We mitigate this threat by
doing interview sessions to validate the survey answers. We also eliminated re-
sponses where participants selected all the possible choices for all the questions.
We also mitigate this threats by checking the responses to questions that are
related to each others (e.g. the used input for ST and the identification direction,
etc.). Finally, we decided not to have incentives for participating in our survey
to minimize social desirability bias.

External validity the survey participants might not be representative of
the general population of software developers migrating legacy systems to SOA.
Thus, the generalizability of our survey might be limited. The mitigation of this
threat to validity is very challenging because (1) we are targeting practition-
ers with very specific technical skills; and (2) professionals are in general not
eager to communicate the details of their in-house tools and techniques of mod-
ernization approaches. To mitigate this risk, we advertised our survey through
various channels (e.g., LinkedIn, Twitter, Facebook and email) and targeted pro-
fessionals from different legacy modernization companies. Also, to the best of our
knowledge, our sample size is one of the largest such size among many papers in
empirical software engineering in general and modernization in particular (see
Section 2). Participants could freely decide whether to participate in the study
or not (self-selection). They were informed about the topic of the survey, the
estimated time to complete the survey, the research purpose of the study and
the guarantee of the anonymity of their identity and that of their answers.

5 Interview Sessions

Eight participants among the 45 agreed to carry phone interviews. Table 1 de-
scribes the profile of these participants. The initial purpose of the interviews was
to ask the participants to elaborate on some of their answers or resolve contradic-
tions among their answers. However, the interviews often ended with discussions
on issues not addressed in the survey. The interviews also allowed participants
to rectify some of their answers and for our part to obtain presentations and
white papers about their migrations. We now summarize salient facts gathered

from the interviews in terms of the adopted migration strategies and directions
of SI.

Participant Profession Years of experience Country
P1 Technical Solution Architect 25 years Germany
P2 Legacy modernization and enterprise IT architect 18 years India

P3 Mainframe Modernization Specialist 33 years USA

P4 Legacy and data Center senior consultant 30 years Italy

P5 Software modernization expert 15 years Canada
P6 IT Architect 20 years Canada
P7 Director of technology 12 years Canada
P8 Software Engineer 7 years France

Table 1. Information about the participants in the interview sessions

5.1 Migration Strategies

We asked the interviewed participants about their adopted migration strategies
to migrate legacy software systems to SOA. We identified three strategies: re-
hosting, legacy system re-architecture, and rehosting followed by re-architecture.
A- Rehosting (adopted by P1, P3, P6) consists of moving a legacy system
with minimal changes from one platform, typically legacy mainframes, to more
modern alternatives such as Linux, Unix, or Windows in two ways: (1) by running
emulators or virtual machines of the source platform on the target platforms
(e.g., a VMS or AS400 emulator/virtual machine on Linux) or (2) by rewriting
the parts of the systems that interface with the target platforms. The business
logic and data of the legacy systems remain unchanged on the new platform.
Rehosting is done when the hardware or software platforms become too costly to
support —or are no longer supported —by the manufacturer/vendor. The systems
can be wrapped within services once they are integrated on the new platforms.
B- Legacy systems re-architecture (adopted by P1, P2, P5) is a migra-
tion strategy in three steps applied each on three different layers: the application-
code layer, which contains the legacy code in Cobol, PL1, etc.; the information
layer, which gathers data access through files, databases etc.; and, the business-
process layer which describes the business logic of the system. The three migra-
tion steps are: (1) Legacy system discovery and migration planning, it focuses
on cataloging and understanding all the assets in the legacy systems, “we are
importing the code in our toolset. We are looking for dependencies and capturing
business processes. We just take a look if everything is complete” said P1; (2)
Design, this phase consists in designing the new system, a “ future case analysis
repository” that contains enhancements to the legacy business processes and all
the modernized data and future SOA model are stored in the information layer;
and (3) Target system development and test, this phase “is a very classic software
development phase just to develop and test the new SOA based system” said P1.
C- Legacy systems re-hosting and re-architecture (adopted by P1,
P4, P7, P8) aims to build new SOAs that yield the business values of the legacy
systems while minimizing costs related to legacy hardware and ensuring a pro-
gressive and incremental replacement of the legacy code. This migration strategy
is mainly used to “minimize disruption while ensuring business continuity” said
P8. It avoids the “big-bang” migration strategy by (1) re-hosting the legacy sys-
tems to modern platforms to minimize hardware costs, (2) creating wrappers
to hide the internal legacy functionalities, and (3) replacing progressively the
legacy code.
5.2 Directions of SI

We detail in this section the adopted directions of SI by our interviewees.

10

A- Bottom-up strategies (P1, P3, P4, and P5) consist of identifying arti-
facts of the legacy code that implement reusable business functions to be repack-
aged as services: “Through the bottom-up SI strategy we want to reuse the existing
legacy code certainly, but not the architecture. Most of legacy systems that we
deal with have about 25 millions lines of code. If we want to write them again, it
can take years” said P5. The artifacts used by bottom-up approaches include the
source code, data flow analyses, legacy system interfaces, databases, documenta-
tions, and human expertise. Reverse-engineering tools were used to understand
the legacy systems and extract their business logic, especially when there is a
lack of documentation and experts. Several interviewees reported using both in-
house and open-source tools to reverse-engineer systems. For example P5 used
an in-house tool based on the Knowledge Discovery Model (KDM) to obtain call
and data-flow graphs of COBOL systems. P5 relies on functionality clustering
and pattern matching to identify reusable services: “We are searching for pat-
terns and we are looking for business rules or business logic that match with these
patterns and heuristics. We are doing data flow analysis with slicing to identify
reusable business functions that can be grouped and deployed as services”. Many
interviewees (P1, P3, P4, and P5) also relied on techniques for detecting code
clones to identify reusable services. “What we also do in many cases is looking
for duplicate code pattern because in many cases business rules are duplicated,
you need to decide what to take out of this” said P4.

B- Top-down strategies (PT) starts from the analysis of domain-specific
conceptual models and requirements to specify the services of the targeted SOA.
P7 recommended to use this strategy when (1) legacy source code is not available,
(2) legacy source code is not reusable, (3) cost of re-engineering and integrating
legacy systems is high, and (4) organizations are mature enough in terms of
business processes. P7 reported that they adopted a semi-automatic top-down
strategy for SI to migrate a legacy banking system to SOA. They used BPMN
process models of the banking legacy system as input. They begun by identifying
the entity-services and the application services. They then moved to higher-level
services, such as task-centric services, and finally developed an orchestration
layer that represented business services. This strategy is based on the analysis
of “information” used in each activity of the business processes. P7 explained
that “information could be a document, reports, windows, screens, an entity etc.
that is required in the execution of an activity”. To identify entity services from
business processes, key information manipulated in the business process models
was identified. An information is considered as key by P7, if it meets at least
one of the following conditions: (1) its number of occurrences exceeds a given
threshold and (2) it is related to a highly solicited activities.

C- Mized strategies (P1, P2, P3, P4, P5, P6, and P8) rely on reverse-
engineering techniques to document the legacy systems, extract the business
logics, and identify reusable pieces of code that can be exposed as services. They
also rely on forward-engineering techniques to define the business processes of
the target SOAs and to design and implement the services. P2 said: “Sometimes
if the source code is available and documentation is not, we use some parser

11

based tools to reverse-engineer these applications. These tools will create some
documentation from the code and then that documentation is used to do the
forward engineering and complete the targeted SOA road map”. He also argued
that “through this documentation we create use cases for forward engineering to
complete the identification, the design and the implementation of the services”.
P1 said ‘“we document everything in our system and then at the very end we
identify the business rules mark them in the code and you can extract them
afterwards [...] we have a list of business processes and core code description and
we also document this, and based on this we are creating our service-oriented
material”.

D- Final choice of the identified services is a manual process driven by
subject-matter experts. P5 said: “We make proposition about the services that
we identify and ask the customer if it makes sense. Sometimes at technical level
we have better knowledge than the customer but not from business process level”.

5.3 Threats to Validity

Internal validity. Social desirability is a bias that leads any respondent to
deny undesirable traits and report traits that are socially desirable. To minimize
this threat, we did not put any incentives for the participants to participate in the
interviews. We also guaranteed the interviewees their anonymity and emphasized
that all the reported information will be only for research purposes.

External validity. Information from our interviews is not generalizable as
the number of the interviewees is a bit on the low end for software engineering
studies. However, it is acceptable given that it is unquestionably difficult to find
interviewees in legacy-to-SOA migration domain. We only sought to obtain a
better understanding of the results of the online survey. Also, Table 1 shows
that our interviewees are experts in legacy-to-SOA migration and, thus, that
our sample is still reliable because we are dealing with subject-matter experts.

Conclusion validity. The information from our interviews also show some
threats to the validity of our conclusion because some interviewees contradict
each other or, for one interviewee, change their answers to the survey. However,
this threat is acceptable because we use these interviews with the purpose to
mitigate and discuss the answers to the survey.

6 Discussions
After analysing the survey and interview data, we highlight the following facts.

Importance of Service Identification From Legacy Systems. We ob-
served that SI is an important step in the overall legacy-to-SOA migration pro-
cess for most practitioners, especially when it comes to the context of SI from
legacy systems. As emphasized by P4 “It is important because we are able to
identify the reusable of the code. SI is considered as the main helmet to measure
the impact of the migration]...] you need to understand the migration cost which
is in many cases too expensive, you have to cut the cost by identifying reusable
pieces of the legacy code in a cost-effective way”. Thus, the agreement about the
importance of identifying reusable services in industry can be explained by the

12

benefits of software reuse. However it should be noted that SI is not always fine-
grained as mentioned by P6 “We basically wrap the legacy system and expose
all its functionalities as services”.

Business-value Driven Service Identification. We notice that not all
service quality criteria are equally targeted by practitioners. Unlike academia,
efforts in industrial SI strategies are made to deal with business constraints
such as the recovering of the business logic of legacy systems and extracting
reusable functionalities with high business value. There are big investments by
practitioners to preserve the business logic of legacy systems rather than to care
about service quality constraints. As it is stated by P2, SI is mainly driven by the
customers business needs: “Our customers do not really focus on these features.
I am not saying that these quality criteria are not necessary but because of the
business constraints, considering service quality metrics become a lower priority
comparing to timing to finish the project and return in investment issues”. Also,
technical constraints may hinder the consideration of quality metrics : targeting
quality metrics while identifying reusable pieces of code that can be exposed as
services may not be suitable for all legacy technologies like mainframe legacy
systems for example: “For banking mainframes systems it is not easy to use that
kind of approach since we are dealing with routines” stated P4.

Automation and Ezxperts Feedbacks. The full automation of SI process
is not the primary focus of practitioners. It is even the case of big moderniza-
tion companies as it is stated by P1 “In our SI methodology we are not doing
everything automatic, automation is about 70% of all the migration project”.
However, there is automation in wrapping and reverse engineering techniques to
document and extract the business logic of legacy systems when the documenta-
tion is absent. Feedback loop with business analysts and customers is considered
essential by practitioners to decide about the pertinence of a candidate identified
service. Practitioners also do not take the risk to try to fully automate the SI
process as it is a challenging problem with unpredictable results, time consuming
and needs a lot of research investments.

Gap between Academia and Industry. None of the interviewed prac-
titioners mentioned the use of research papers or academic resources for their
migration projects. From the point of view of practitioners, "academics do not
see the larger picture of the real industrial problems and challenges they are
facing” as stated by P2. The lack of cost-effective academic SI technique and
the lack of validation on real enterprise-scale systems is a problem that hinders
knowledge transfer between academia and industry in the context of legacy-to-
SOA migration.

7 Conclusion and Recommendations

We presented a state of the practice of SI in industry to support the migration
of legacy software systems to SOA. We surveyed 45 industrial practitioners and
interviewed eight of them to collect, analyze, and report their experiences with
the migration of legacy systems. Our results showed that reducing maintenance
costs and improving the flexibility and interoperability of legacy systems are the

13

main motivations to migrate these systems to SOA. They also showed that SI is
perceived by practitioners as an important step for the migration, in particular
to identify reusable code in the legacy systems. In addition, they showed that SI
is a process driven by business value rather than quality criteria, even though
some practitioners consider some quality criteria (mainly reusability, granularity,
and loose coupling). Finally, our results showed that SI remains a manual process
in which human experts’ feedbacks is essential.

We drew several lessons from these results, which we summarize as follows.

Service identification is a business-value driven process. When iden-
tifying services we must focus on the functional clusters that implement useful
and reusable business functions. We must not focus on technical/architectural
properties, as many academic techniques do (e.g., [1,2,11,12]). While the re-
search literature identifies many service types, SI must first and foremost focus
on identifying domain services, i.e., entity, business, and process services that
have business values.

A deep understanding of the domain and a great familiarity with
the legacy systems are necessary. Because Sl is driven by business values,
we must have a deep understanding of the domain, including its main entities
and processes. We must also be familiar with the legacy systems in which to
identify services. While the research literature assumes that the SI techniques
are independent of the legacy experts, they should allow incorporating seamlessly
knowledge from experts who are familiar with the systems.

The input must be source code and production data. According to
the old military adage, if the terrain differs from the map, trust the terrain.
With legacy systems, documentation (the map) may be absent or awfully out
of date. The source code (the terrain) is the only reliable source of information
about what the current system does. Production data, as stored for example in
databases or JCL scripts, also contain valuable, up-to-date information about
the systems. Therefore, while the research literature has been recently studying
Q&A forums and other similar documentations, it should also strive to reconcile
and improve the analyses of different up-to-date sources of information.

The output must be high-value, coarse-grained services. Regardless
of the targeted SOA technology, be it SOAP, RESTful, or microservices, the
output of any SI technique must be high-value, coarse grained domain services.
While the research literature has been concerned by the implementation (and
quality thereof) of services, it should seek to define, assess, and optimize the
business values of the identified services.

The process must follow a (proven) methodology. Migration projects
are complex endeavors, regardless of the source and target technologies. There is
value in adopting or adapting an existing SOA migration methodology because
such methodologies prescribe processes, deliverables, and quality metrics to guide
the migration. While the research literature proposes techniques, the participants
recommended using existing methodologies including Oracle’s OUM Methodol-
ogy, IBM’s Service-Oriented Modelling and Architecture (SOMA) methodology
[3], and devising SI techniques as parts of these methodologies.

14

In future work, we plan to build an exhaustive catalogue of best practices for
SI. We also want to identify issues that the research community can address to
facilitate knowledge transfer between academia and industry in the context of
legacy-to-SOA migration.
References

1. Adjoyan, S., Seriai, A., Shatnawi, A.: Service identification based on quality metrics
object-oriented legacy system migration towards SOA. In: SEKE. pp. 1-6 (2014)

2. Amiri, M.J., Parsa, S., Lajevardi, A.M.: Multifaceted service identification: Pro-
cess, requirement and data. ComSIS pp. 335-358 (2016)

3. Arsanjani, A., Ghosh, S., Allam, A., Abdollah, T., Ganapathy, S., Holley, K.: Soma:
A method for developing service-oriented solutions. IBM systems Journal 47(3),
377-396 (2008)

4. Canfora, G., Fasolino, A.R., Frattolillo, G., Tramontana, P.: Migrating interactive
legacy systems to web services. In: CSMR. p. 10 (2006)

5. Charmaz, K., Belgrave, L.: Qualitative interviewing and grounded theory analysis.
The SAGE handbook of interview research pp. 347-365 (2012)

6. Chenghao, G., Min, W., Xiaoming, Z.: A wrapping approach and tool for migrating
legacy components to web services. In: ICNDC. pp. 94-98 (2010)

7. Di Francesco, P., Malavolta, 1., Lago, P.: Research on architecting microservices:
Trends, focus, and potential for industrial adoption. In: ICSA. pp. 21-30 (2017)

8. Djeloul, M.: Locating services in legacy software:information retrieval techniques,
ontology and fca based approach. WSEAS Trans. Comput. (Greece) (2012)

9. Erl, T.: SOA Principles of Service Design. Prentice Hall PTR, NJ, USA (2007)

10. Gysel, M., Kolbener, L., Giersche, W., Zimmermann, O.: Service cutter: A system-
atic approach to service decomposition. In: ESOCC. pp. 185-200 (2016)

11. Huergo, R.S., Pires, P.F., Delicato, F.C.: A method to identify services using master
data and artifact-centric modeling approach. In: ACM SAC. pp. 1225-1230 (2014)

12. Jain, H., Zhao, H., Chinta, N.R.: A spanning tree based approach to identifying
web services. International Journal of Web Services Research 1(1), 1 (2004)

13. Khadka, R., Saeidi, A., Jansen, S., Hage, J.: A structured legacy to soa migration
process and its evaluation in practice. In: MESOCA. pp. 2-11 (2013)

14. Lewis, G., Morris, E., O’Brien, L., Smith, D., Wrage, L.: Smart: The service-
oriented migration and reuse technique. Tech. rep., DTIC Document (2005)

15. Razavian, M., Lago, P.: A survey of soa migration in industry. In: ICSOC. pp.
618-626. Springer (2011)

16. Rodriguez-Echeverria, R., Maclas, F., Pavon, V.M., Conejero, J.M., Sanchez-
Figueroa, F.: Generating a rest service layer from a legacy system. In: Information
System Development, pp. 433444 (2014)

17. Sneed, H.M., Verhoef, C., Sneed, S.H.: Reusing existing object-oriented code as
web services in a soa. In: MESOCA. pp. 31-39. IEEE (2013)

18. Souza, E., Moreira, A., De Faveri, C.: An approach to align business and it per-
spectives during the soa services identification. In: ICCSA. pp. 1-7 (2017)

19. Taibi, D., Lenarduzzi, V., Pahl, C.: Processes, motivations, and issues for migrating
to microservices architectures: An empirical investigation. IEEE Cloud Computing
4(5), 22-32 (2017)

20. Zhang, Z., Yang, H., Chu, W.C.: Extracting reusable object-oriented legacy code
segments with combined formal concept analysis and slicing techniques for service
integration. In: QRS. pp. 385-392 (2006)

15

